The impulse response of a causal, linear, time-invariant, continuous-time system is h(t). The output y(t) of the same system to an input x(t), where x(t) = 0 for t < -2, is
A. $$\int\limits_0^t {h\left( \tau \right)x\left( {t - \tau } \right)d\tau } $$
B. $$\int\limits_{ - 2}^t {h\left( \tau \right)x\left( {t - \tau } \right)d\tau } $$
C. $$\int\limits_{ - 2}^{t - 2} {h\left( \tau \right)x\left( {t - \tau } \right)d\tau } $$
D. $$\int\limits_0^{t + 2} {h\left( \tau \right)x\left( {t - \tau } \right)d\tau } $$
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion