The input-output relationship of a causal stable LTI system is given as y[n] = αy[n - 1] + βx[n]
If the impulse response h[n] of this system satisfies the condition $$\sum\limits_{n = 0}^\infty {h\left[ n \right] = 2,} $$ the relationship between α and β is
A. $$\alpha = 1 - \frac{\beta }{2}$$
B. $$\alpha = 1 + \frac{\beta }{2}$$
C. α = 2β
D. α = -2β
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion