The input x(t) and output y(t) of a system are related as $$y\left( t \right) = \int\limits_{ - \infty }^t {x\left( \tau \right)} \cos \left( {3\tau } \right)d\tau .$$ The system is
A. Time-invariant and stable
B. Stable and not time-invariant
C. Time-invariant and not stable
D. Not time-invariant and not stable
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion