The inverse of the matrix \[\left[ {\begin{array}{*{20}{c}} {3 + 2{\text{i}}}&{\text{i}} \\ { - {\text{i}}}&{3 - 2{\text{i}}} \end{array}} \right]\] is
A. \[\frac{1}{{12}}\left[ {\begin{array}{*{20}{c}} {3 + 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 - 2{\text{i}}} \end{array}} \right]\]
B. \[\frac{1}{{12}}\left[ {\begin{array}{*{20}{c}} {3 - 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 + 2{\text{i}}} \end{array}} \right]\]
C. \[\frac{1}{{14}}\left[ {\begin{array}{*{20}{c}} {3 + 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 - 2{\text{i}}} \end{array}} \right]\]
D. \[\frac{1}{{14}}\left[ {\begin{array}{*{20}{c}} {3 - 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 + 2{\text{i}}} \end{array}} \right]\]
Answer: Option B
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion