Examveda

The inverse of the matrix \[\left[ {\begin{array}{*{20}{c}} {3 + 2{\text{i}}}&{\text{i}} \\ { - {\text{i}}}&{3 - 2{\text{i}}} \end{array}} \right]\]   is

A. \[\frac{1}{{12}}\left[ {\begin{array}{*{20}{c}} {3 + 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 - 2{\text{i}}} \end{array}} \right]\]

B. \[\frac{1}{{12}}\left[ {\begin{array}{*{20}{c}} {3 - 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 + 2{\text{i}}} \end{array}} \right]\]

C. \[\frac{1}{{14}}\left[ {\begin{array}{*{20}{c}} {3 + 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 - 2{\text{i}}} \end{array}} \right]\]

D. \[\frac{1}{{14}}\left[ {\begin{array}{*{20}{c}} {3 - 2{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{3 + 2{\text{i}}} \end{array}} \right]\]

Answer: Option B


This Question Belongs to Engineering Maths >> Linear Algebra

Join The Discussion

Related Questions on Linear Algebra