Examveda

The Lagrangian for a simple pendulum is given by $$L = \frac{1}{2}m{L^2}{{\dot \theta }^2} - mgL\left( {1 - \cos \theta } \right)$$
Hamiltonian equations are given by

A. $${{\dot p}_\theta } = - mgL\,\sin \theta ,\,\dot \theta = \frac{{{p_\theta }}}{{m{L^2}}}$$

B. $${{\dot p}_\theta } = mgL\,\sin ,\,\dot \theta = \frac{{{p_\theta }}}{{m{L^2}}}$$

C. $${p_\theta } = - m\dot \theta ,\,\dot \theta = \frac{{{p_\theta }}}{m}$$

D. $${{\dot p}_\theta } = - \left( {\frac{g}{L}} \right)\theta ,\,\dot \theta = \frac{{{p_\theta }}}{{mL}}$$

Answer: Option A


This Question Belongs to Engineering Physics >> Classical Mechanics

Join The Discussion

Related Questions on Classical Mechanics