The Lagrangian for a three-particle system is given by $$L = \frac{1}{2}\left( {\dot n_1^2 + \dot n_2^2 + \dot n_3^2} \right) - {a^2}\left( {n_1^2 + n_2^2 + n_3^2 - {n_1}{n_3}} \right)$$
where, a is real, then one of the normal coordinates has a frequency $$\omega $$ given by
A. $${\omega ^2} = {a^2}$$
B. $${\omega ^2} = \frac{{{a^2}}}{2}$$
C. $${\omega ^2} = 2{a^2}$$
D. $${\omega ^2} = \sqrt 2 {a^2}$$
Answer: Option C
Related Questions on Classical Mechanics
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion