The Lagrangian forthe Kepler problem is given by $$L = \frac{1}{2}\left[ {{{\dot r}^2} + {r^2}{{\dot \theta }^2}} \right] + \frac{\mu }{r}\,\,\,\,\,\,\,\left( {\mu > 0} \right)$$
where, $$\left( {r,\,\theta } \right)$$ denotes the polar coordinates and mass of the particle is unity, then
A. $${p_\theta } = 2{r^2}\dot \theta $$
B. $${p_r} = 2\dot r$$
C. the angular momentum of the particle about the centre of attraction is a constant
D. the total energy of the particle is time dependent
Answer: Option C
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion