The Lagrangian of a free particle in spherical polar coordinates is given by $$L = \frac{1}{2}m\left[ {{{\dot r}^2} + r{{\dot \theta }^2} + {r^2}{{\dot \phi }^2}{{\sin }^2}\theta } \right]$$
The quantity that conserved is
A. $$\frac{{\partial L}}{{\partial \dot r}}$$
B. $$\frac{{\partial L}}{{\partial \dot \theta }}$$
C. $$\frac{{\partial L}}{{\partial \dot \phi }}$$
D. $$\frac{{\partial L}}{{\partial \dot \phi }} + \dot r\dot \theta $$
Answer: Option C
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion