The Lagrangian of a particle moving in a plane under the influence of central potential is given by $$L = \frac{1}{2}m\left( {{{\dot r}^2} = {r^2}{{\dot \theta }^2}} \right) - V\left( r \right).$$ The generalised momenta corresponding to r and θ are given by
A. $$m\dot r{\text{ and }}m{r^2}\dot \theta $$
B. $$m\dot r{\text{ and }}mr\dot \theta $$
C. $$m{{\dot r}^2}{\text{ and }}m{r^2}\dot \theta $$
D. $$m{{\dot r}^2}{\text{ and }}m{r^2}{{\dot \theta }^2}$$
Answer: Option A
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion