The Laplace transform of a continuous-time signal x(t) is $$X\left( s \right) = {{5 - s} \over {{s^2} - s - 2}}.$$ If the Fourier transform of this signal exists, then x(t) is
A. e2tu(t) - 2e-tu(t)
B. -e2tu(-t) + 2e-tu(t)
C. -e2tu(-t) - 2e-tu(t)
D. e2tu(-t) - 2e-tu(t)
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion