The line integral \[\int {\overrightarrow {\text{V}} .{\text{d}}\overrightarrow {\text{r}} } \] of the vector \[\overrightarrow {\rm{V}} .\left( {\overrightarrow {\rm{r}} } \right) = 2{\rm{xyz\hat i}} + {{\rm{x}}^2}{\rm{z\hat j}} + {{\rm{x}}^2}{\rm{y\hat k}}\] from the origin to the point P(1, 1, 1)
A. is 1
B. is zero
C. is -1
D. cannot be determined without specifying path
Answer: Option A
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion