The line integral $$\int\limits_{{{\text{P}}_1}}^{{{\text{P}}_2}} {\left( {{\text{ydx}} + {\text{xdy}}} \right)} $$ for P1(x1, y1) to P2(x2, y2) along the semicircle P1, P2 shown in the figure is

A. x2y2 - x1y1
B. $$\left( {{\text{y}}_2^2 - {\text{y}}_1^2} \right) + \left( {{\text{x}}_2^2 - {\text{x}}_1^2} \right)$$
C. (x2 - x1) (y2 - y1)
D. (y2 - y1)2 + (x2 - x1)2
Answer: Option A
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion