Examveda

The linear constant coefficient difference equation $$y\left( n \right) - \frac{1}{2}y\left( {n - 1} \right) = x\left( n \right) + \frac{1}{3}x\left( {n - 1} \right)$$        lead to

A. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 + \frac{1}{3}{Z^{ - 1}}}}{{1 + \frac{1}{2}{Z^{ - 1}}}}$$

B. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 - \frac{1}{3}{Z^{ - 1}}}}{{1 - \frac{1}{2}{Z^{ - 1}}}}$$

C. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 - \frac{1}{3}{Z^{ - 1}}}}{{1 + \frac{1}{2}{Z^{ - 1}}}}$$

D. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 + \frac{1}{3}{Z^{ - 1}}}}{{1 - \frac{1}{2}{Z^{ - 1}}}}$$

Answer: Option D


Join The Discussion

Related Questions on Signal Processing