The linear constant coefficient difference equation $$y\left( n \right) - \frac{1}{2}y\left( {n - 1} \right) = x\left( n \right) + \frac{1}{3}x\left( {n - 1} \right)$$ lead to
A. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 + \frac{1}{3}{Z^{ - 1}}}}{{1 + \frac{1}{2}{Z^{ - 1}}}}$$
B. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 - \frac{1}{3}{Z^{ - 1}}}}{{1 - \frac{1}{2}{Z^{ - 1}}}}$$
C. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 - \frac{1}{3}{Z^{ - 1}}}}{{1 + \frac{1}{2}{Z^{ - 1}}}}$$
D. $$\frac{{Y\left( Z \right)}}{{X\left( Z \right)}} = \frac{{1 + \frac{1}{3}{Z^{ - 1}}}}{{1 - \frac{1}{2}{Z^{ - 1}}}}$$
Answer: Option D
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion