The linear operation L(x) is defined by the cross product L(x) = b × X, where b = [0 1 0]T and X = [x1x2x3]T are three dimensional vectors. The 3 × 3 matrix M of this operation satisfies \[{\text{L}}\left( {\text{x}} \right) = {\text{M}}\left[ {\begin{array}{*{20}{c}}
{{{\text{x}}_1}} \\
{{{\text{x}}_2}} \\
{{{\text{x}}_3}}
\end{array}} \right].\]
Then the eigen values of M are
A. 0, +1, -1
B. 1, -1, 1
C. i, -i, 1
D. i, -i, 0
Answer: Option D
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2
Join The Discussion