The matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}}
{\frac{3}{2}}&0&{\frac{1}{2}} \\
0&{ - 1}&0 \\
{\frac{1}{2}}&0&{\frac{3}{2}}
\end{array}} \right]\] has three distinct eigen values and one of its eigen vectors is \[\left[ {\begin{array}{*{20}{c}}
1 \\
0 \\
1
\end{array}} \right].\]
Which one of the following can be another eigen vector of A?
A. \[\left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ { - 1} \end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}} { - 1} \\ 0 \\ 0 \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ { - 1} \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} 1 \\ { - 1} \\ 1 \end{array}} \right]\]
Answer: Option C
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion