The matrix \[{\text{M}} = \left[ {\begin{array}{*{20}{c}} { - 2}&2&{ - 3} \\ 2&1&{ - 6} \\ { - 1}&{ - 2}&0 \end{array}} \right]\] has eigen values -3, -3, 5. An eigen vector corresponding to the eigen value 5 is [1 2 -1]T. One of the eigen vectors of the matrix M3 is
A. [1 8 -1]T
B. [1 2 -1]T
C. \[{\left[ {\begin{array}{*{20}{c}} 1&{\sqrt[3]{2}}&{ - 1} \end{array}} \right]^{\text{T}}}\]
D. [1 1 -1]T
Answer: Option B
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion