The N-point DFT of a sequence x[n], 0 ≤ n ≤ N - 1 is given by
$$X\left[ K \right] = \frac{1}{{\sqrt N }}\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} {e^{ - j\frac{{2\pi }}{N}nK}},0 \leqslant K \leqslant N - 1$$
Denote this relation as X = DFT(x). For N = 4, which one of the following sequences satisfies DFT (DFT (x)) = x.
A. x = [1 2 3 r]
B. x = [1 2 3 2]
C. x = [1 3 2 2]
D. x = [1 2 2 3]
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion