The output w[n] of the system shown in figure is \[\xrightarrow{{x\left[ n \right]}}\boxed{y\left[ n \right] = \sum\limits_{ - \infty }^n {x\left[ k \right]} }\xrightarrow{{y\left[ n \right]}}\boxed{w\left[ n \right] = y\left[ n \right] - y\left[ {n - 1} \right]}\xrightarrow{{w\left[ n \right]}}\]
A. x[n]
B. x[n - 1]
C. x[n] - x[n - 1]
D. \[\frac{1}{2}\] (x[n - 1]) + x[n]
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion