Solution (By Examveda Team)
$$\eqalign{
& {\text{Let number of men in the population be }}x \cr
& {\text{Number of women}} = \left( {35000 - x} \right) \cr
& {\text{Increase in the number of men}} \cr
& = 6\% \,of\,x = \frac{{6x}}{{100}} \cr
& {\text{Increase in the number of women}} \cr
& = \left( {3500 - x} \right) \times \frac{4}{{100}} \cr
& {\text{Increase in whole population}} \cr
& = 36760 - 35000 = 1760 \cr
& {\text{Now}}, \cr
& \frac{{6x}}{{100}} + \left[ {\left( {35000 - x} \right) \times \frac{4}{{100}}} \right] = 1760 \cr
& \left[ {\left( {6x - 4x} \right) + 35000 \times \frac{4}{{100}}} \right] = 1760 \cr
& 2x + 35000 \times 4 = 1760 \times 100 \cr
& 2x = 176000 - 35000 \times 4 \cr
& x = 18000 \cr
& {\text{Number}}\,{\text{of}}\,{\text{men}} = 18000 \cr
& {\text{Number}}\,{\text{of}}\,{\text{women}} \cr
& = 35000 - 18000 \cr
& = 17000 \cr} $$
Can be done with the Spider Method.
Let number of men in the population be x
Number of women = (35000−x)
Increase in the number of men = 6% of x
= 6x/100
Increase in the number of women = (35000−x) × 4/100
Increase in whole population = 36760 − 35000
= 1760
Now,
6x/100 + [(35000−x) × 4/100] = 1760
⇒ [(6x−4x) + 35000 × 4/100] = 1760
⇒ 2x + 35000 × 4 = 1760 × 100
⇒ 2x = 176000 − 35000 × 4
⇒ x = 18000
Number of men = 18000
Number of women = 35000 − 18000
= 17000
Let number of men in the population be x
Number of women = (35000−x)
Increase in the number of men = 6% of x
= 6x/100
Increase in the number of women = (35000−x) × 4/100
Increase in whole population = 36760 − 35000
= 1760
Now,
6x/100 + [(35000−x) × 4/100] = 1760
⇒ [(6x−4x) + 35000 × 4/100] = 1760
⇒ 2x + 35000 × 4 = 1760 × 100
⇒ 2x = 176000 − 35000 × 4
⇒ x = 18000
Number of men = 18000
Number of women = 35000 − 18000
= 17000
Another short method plz..
tell other short method
please tell any short method
Tell me another method of this question