The power in the signal
$$s\left( t \right) = 8\cos \left( {20\pi t - {\pi \over 2}} \right) + 4\,\sin \left( {15\pi t} \right)$$ is
A. 40
B. 41
C. 42
D. 82
Answer: Option A
Join The Discussion
Comments (1)
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Calculate the power of the following signal : x(t)=8 cos (20πt-π/2)+4sin(15πt)
Please give solution