The ratio of bulk modulus to Young's modulus for a Poisson's ratio of 0.25 will be
A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. 1
D. $$\frac{3}{2}$$
Answer: Option B
A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. 1
D. $$\frac{3}{2}$$
Answer: Option B
A. Equal to
B. Less than
C. Greater than
D. None of these
A. $$\frac{{{\text{w}}l}}{6}$$
B. $$\frac{{{\text{w}}l}}{3}$$
C. $${\text{w}}l$$
D. $$\frac{{2{\text{w}}l}}{3}$$
The columns whose slenderness ratio is less than 80, are known as
A. Short columns
B. Long columns
C. Weak columns
D. Medium columns
E=3k(1-2ú)
K/E=1/3(1-2*0.25)
K/E=1/3×0.5
K/E= 1/1.5 = 0.6666
Similarly 2/3= 0.666
Hence, 2/3
how to solve