The relationship between the input x(t) and the output y(t) of a system is $$\frac{{{d^2}y}}{{d{t^2}}} = x\left( {t - 2} \right)u\left( {t - 2} \right) + \frac{{{d^2}x}}{{d{t^2}}}$$
The transfer function of the system is
A. $$1 + \frac{{{s^2}}}{{{e^{2s}}}}$$
B. $$1 + \frac{{{e^{ - 2s}}}}{{{s^2}}}$$
C. $$1 + \frac{{{e^{2s}}}}{{{s^2}}}$$
D. $$1 + \frac{{{s^2}}}{{{e^{ - 2s}}}}$$
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion