Examveda The remainder of $$\frac{{{6^{36}}}}{{215}}:$$ B. 1C. 2D. 3Answer: Option B Solution (By Examveda Team) $$\eqalign{ & \frac{{ {{6^{36}}} }}{{215}},\,{\text{can}}\,{\text{be}}\,{\text{written}}\,{\text{as}} \cr & \frac{{{{\left( {{6^3}} \right)}^{12}}}}{{215}} \cr & Or,\,\frac{{{{216}^{12}}}}{{215}},\,[216\,{\text{on}}\,{\text{divided}}\,{\text{by}}\,215,\,{\text{gives}}\,{\text{remainder}}\,1] \cr & \frac{{{1^{12}}}}{{215}} \cr & {\text{The}}\,{\text{remainder}}\,{\text{will}}\,{\text{be}}\,1 \cr} $$ This Question Belongs to Arithmetic Ability >> Number System
Solution (By Examveda Team) $$\eqalign{ & \frac{{ {{6^{36}}} }}{{215}},\,{\text{can}}\,{\text{be}}\,{\text{written}}\,{\text{as}} \cr & \frac{{{{\left( {{6^3}} \right)}^{12}}}}{{215}} \cr & Or,\,\frac{{{{216}^{12}}}}{{215}},\,[216\,{\text{on}}\,{\text{divided}}\,{\text{by}}\,215,\,{\text{gives}}\,{\text{remainder}}\,1] \cr & \frac{{{1^{12}}}}{{215}} \cr & {\text{The}}\,{\text{remainder}}\,{\text{will}}\,{\text{be}}\,1 \cr} $$
Find the remainder when 73 × 75 × 78 × 57 × 197 × 37 is divided by 34. A. 32B. 30C. 15D. 28 View Answer
Three numbers are in ratio 1 : 2 : 3 and HCF is 12. The numbers are: A. 12, 24, 36B. 11, 22, 33C. 12, 24, 32D. 5, 10, 15 View Answer
Join The Discussion