The signal $$\cos \left( {10\pi t + \frac{\pi }{4}} \right)$$ is ideally sampled at a sampling frequency of 15 Hz. The sampled signal is passed through a filter with impulse response $$\left( {\frac{{\sin \left( {\pi t} \right)}}{{\pi \tau }}} \right)\cos \left( {40\pi t - \frac{\pi }{2}} \right).$$ The filter output is
A. $$\frac{{15}}{2}\cos \left( {40\pi t - \frac{\pi }{4}} \right)$$
B. $$\frac{{15}}{2}\left( {\frac{{\sin \left( {\pi t} \right)}}{{\pi t}}} \right)\cos \left( {10\pi t + \frac{\pi }{4}} \right)$$
C. $$\frac{{15}}{2}\cos \left( {10\pi t - \frac{\pi }{4}} \right)$$
D. $$\frac{{15}}{2}\left( {\frac{{\sin \left( {\pi t} \right)}}{{\pi t}}} \right)\cos \left( {10\pi t - \frac{\pi }{2}} \right)$$
Answer: Option A
Join The Discussion