The signal x(t) is described by
$$x\left( t \right) = \left\{ {\matrix{
{1\,{\rm{for}}} & { - 1 \le t \le + 1} \cr
{0,} & {{\rm{otherwise}}} \cr
} } \right.$$
Two of the angular frequencies at which its Fourier transform becomes zero are
A. π, 2π
B. 0.5π, 1.5π
C. 0, π
D. 2π, 2.5π
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion