The system function of the digital filter is
A. $$H\left( Z \right) = \sum\limits_{K = 0}^N {\frac{{{C_K}}}{{1 - {e^P}{K^T}{Z^{ - 1}}}}} $$
B. $$H\left( Z \right) = \sum\limits_{K = 1}^N {\frac{{{C_K}}}{{1 - {e^P}{K^T}{Z^{ - 1}}}}} $$
C. $$H\left( Z \right) = \sum\limits_{K = - N}^N {\frac{{{C_K}}}{{1 - {e^P}{K^T}{Z^{ - 1}}}}} $$
D. $$H\left( Z \right) = \sum\limits_{K = 0}^\infty {\frac{{{C_K}}}{{1 - {e^P}{K^T}{Z^{ - 1}}}}} $$
Answer: Option B
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion