Examveda

The Taylor series expansion of \[\frac{{\sin {\text{x}}}}{{{\text{x}} - \pi }}\]  at \[{\text{x}} = \pi \]  is given by

A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Answer: Option B


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Comments (1)

  1. Fayaz Ahmad
    Fayaz Ahmad:
    2 months ago

    The correct option is. D. −1+(x−π)23!-..
    We want the **Taylor (Maclaurin-type) series expansion** of

    $$
    f(x) = frac{sin x}{x - pi}, quad text{about } x = pi.
    $$

    Let

    $$
    h = x - pi quad Rightarrow quad x = pi + h.
    $$

    Then

    $$
    f(x) = frac{sin(pi + h)}{h}.
    $$

    $$
    sin(pi + h) = -sin h.
    $$

    So

    $$
    f(x) = frac{-sin h}{h}.
    $$
    Use series for $sin h$

    $$
    sin h = h - frac{h^3}{3!} + frac{h^5}{5!} - cdots
    $$

    So

    $$
    frac{sin h}{h} = 1 - frac{h^2}{3!} + frac{h^4}{5!} - cdots
    $$

    Thus

    $$
    f(x) = -left(1 - frac{h^2}{6} + frac{h^4}{120} - cdots right).
    $$

    Substitute back $h = x - pi$

    $$
    f(x) = -1 + frac{(x - pi)^2}{6} - frac{(x - pi)^4}{120} + cdots
    $$
    (Taylor series of $tfrac{sin x}{x-pi}$ at $x=pi$):**

    $$
    frac{sin x}{x-pi} = -1 + frac{(x - pi)^2}{6} - frac{(x - pi)^4}{120} + frac{(x - pi)^6}{5040} - cdots
    $

Related Questions on Calculus