The two pericyclic reactions successively involved in the thermal transformation given below are

A. 6π-electrocyclization followed by [4 + 2] π-cycloaddition
B. 8π-cycloaddition followed by [2 + 2] π-electrocyclization
C. 6π-cycloaddition followed by [2 + 2] π-electrocyclization
D. 4π-electrocyclization followed by [4 + 2] π-cycloaddition
Answer: Option D
A. CH3C$${\text{O}}_2^ - $$ > CH3O- > C6H5O- > N$${\text{O}}_3^ - $$
B. CH3O- > N$${\text{O}}_3^ - $$ > C6H5O- > CH3C$${\text{O}}_2^ - $$
C. CH3O- > C6H5O- > CH3C$${\text{O}}_2^ - $$ > N$${\text{O}}_3^ - $$
D. C6H5O- > CH3O- > N$${\text{O}}_3^ - $$ > CH3C$${\text{O}}_2^ - $$
The most appropriate sequence of the reactions for carrying out the following conversion
is
A. (i) peracid, (ii) H+, (iii) Zn/dil.HCl
B. (i) Alkaline KMnO4, (ii) NalO4, (iii) N2H4/KOH
C. (i) Alkaline KMnO4, (ii) H+, (iii) Zn/dil.HCl
D. (i) O3/Me2S, (ii) NaOEt, (iii) N2H4/KOH
Conversion of Ph-NH2 into Ph-CN can be accomplished by
A. reaction with sodium cyanide in the presence of nickel catalyst
B. reaction with chloroform and sodium hydroxide
C. diazotisation followed by reaction with CuCN
D. reaction with ethyl formate followed by thermolysis
Join The Discussion