The unilateral Laplace transform of f(t) is $${1 \over {{s^2} + s + 1}}.$$ Which one of the following is the unilateral Laplace transform of g(t) = t.f(t)?
A. $${{ - s} \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
B. $${{ - \left( {2s + 1} \right)} \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
C. $${s \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
D. $${{2s + 1} \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion