Examveda The value of $$\frac{{2{{\cos }^3}\theta - \cos \theta }}{{\sin \theta - 2{{\sin }^3}\theta }}:$$ A. secθB. sinθC. cotθD. tanθAnswer: Option C Solution (By Examveda Team) $$\eqalign{ & \frac{{2{{\cos }^3}\theta - \cos \theta }}{{\sin \theta - 2{{\sin }^3}\theta }} \cr & = \frac{{\cos \theta \left[ {2{{\cos }^2}\theta - 1} \right]}}{{\sin \theta \left[ {1 - 2{{\sin }^2}\theta } \right]}} \cr & = \frac{{\cos \theta \times \cos 2\theta }}{{\sin \theta \times \cos 2\theta }} \cr & = \cot \theta \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & \frac{{2{{\cos }^3}\theta - \cos \theta }}{{\sin \theta - 2{{\sin }^3}\theta }} \cr & = \frac{{\cos \theta \left[ {2{{\cos }^2}\theta - 1} \right]}}{{\sin \theta \left[ {1 - 2{{\sin }^2}\theta } \right]}} \cr & = \frac{{\cos \theta \times \cos 2\theta }}{{\sin \theta \times \cos 2\theta }} \cr & = \cot \theta \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion