Solution (By Examveda Team)
$$\eqalign{
& \frac{{3\left( {{\text{cose}}{{\text{c}}^2}{{26}^ \circ } - {{\tan }^2}{{64}^ \circ }} \right) + \left( {{{\cot }^2}{{42}^ \circ } - {{\sec }^2}{{48}^ \circ }} \right)}}{{\cot \left( {{{22}^ \circ } - \theta } \right) - {\text{cose}}{{\text{c}}^2}\left( {{{62}^ \circ } + \theta } \right) - \tan \left( {\theta + {{68}^ \circ }} \right) + {{\tan }^2}\left( {{{28}^ \circ } - \theta } \right)}} \cr
& = \frac{{3\left( {{\text{cose}}{{\text{c}}^2}{{26}^ \circ } - {{\cot }^2}{{26}^ \circ }} \right) + \left( {{{\cot }^2}{{42}^ \circ } - {\text{cose}}{{\text{c}}^2}{{42}^ \circ }} \right)}}{{\cot \left( {{{22}^ \circ } - \theta } \right) - {\text{cose}}{{\text{c}}^2}\left( {{{62}^ \circ } + \theta } \right) - \cot \left( {{{22}^ \circ } + \theta } \right) + {{\cot }^2}\left( {{{62}^ \circ } + \theta } \right)}} \cr
& = \frac{{3 \times 1 + \left( { - 1} \right)}}{{ - 1}} \cr
& = - 2 \cr} $$
Join The Discussion