Examveda The value of cos220° + cos270° is? A. $$\sqrt 2 $$B. 2C. $$\frac{1}{{\sqrt 2 }}$$D. 1Answer: Option D Solution (By Examveda Team) $$\eqalign{ & {\text{co}}{{\text{s}}^2}{20^ \circ } + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = {\text{co}}{{\text{s}}^2}\left( {{{90}^ \circ } - {{70}^ \circ }} \right) + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = {\sin ^2}{70^ \circ } + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = 1 \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & {\text{co}}{{\text{s}}^2}{20^ \circ } + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = {\text{co}}{{\text{s}}^2}\left( {{{90}^ \circ } - {{70}^ \circ }} \right) + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = {\sin ^2}{70^ \circ } + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = 1 \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion