The value of integral \[\mathop{{\int\!\!\!\!\!\int}\mkern-21mu \bigcirc}\limits_{\text{S}} {\overrightarrow {\text{r}} \cdot \overrightarrow {\text{n}} {\text{ds}}} \] over the closed surface S bounding a volume, where \[\overrightarrow {\rm{r}} = {\rm{x\hat i}} + {\rm{y\hat j}} + {\rm{z\hat k}}\] is the position vector and \[{{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}} \over n} }}}\] is the normal to the surface S, is
A. V
B. 2V
C. 3V
D. 4V
Answer: Option C
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion