The value of the contour integral in the complex plane $$\oint {\frac{{{{\text{z}}^3} - 2{\text{z}} + 3}}{{{\text{z}} - 2}}{\text{dz}}} $$ along the contour |z| = 3, taken counter-clockwise is
A. -18πi
B. 0
C. 14πi
D. 48πi
Answer: Option C
A. -18πi
B. 0
C. 14πi
D. 48πi
Answer: Option C
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$
Join The Discussion