The value of the definite integral $$\int_1^{\text{e}} {\sqrt {\text{x}} } \ln \left( {\text{x}} \right){\text{dx}}$$ is
A. $$\frac{4}{9}\sqrt {{{\text{e}}^3}} + \frac{2}{9}$$
B. $$\frac{2}{9}\sqrt {{{\text{e}}^3}} - \frac{4}{9}$$
C. $$\frac{2}{9}\sqrt {{{\text{e}}^3}} + \frac{4}{9}$$
D. $$\frac{4}{9}\sqrt {{{\text{e}}^3}} - \frac{2}{9}$$
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion