The value of the integral \[\int\limits_0^2 {\int\limits_0^{\text{x}} {{{\text{e}}^{{\text{x}} + {\text{y}}}}} } {\text{dy dx}}\]
A. \[\frac{1}{2}\left( {{\text{e}} - 1} \right)\]
B. \[\frac{1}{2}{\left( {{{\text{e}}^2} - 1} \right)^2}\]
C. \[\frac{1}{2}\left( {{{\text{e}}^2} - {\text{e}}} \right)\]
D. \[\frac{1}{2}{\left( {{\text{e}} - \frac{1}{{\text{e}}}} \right)^2}\]
Answer: Option B
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion