The values of the integral $$\frac{1}{{2\pi {\text{j}}}}\oint\limits_{\text{c}} {\frac{{{{\text{e}}^{\text{z}}}}}{{{\text{z}} - 2}}{\text{dz}}} $$ along a closed contour c in anti-clockwise direction for
i. the point z0 = 2 inside the contour c, and
ii. the point z0 = 2 outside the contour c, respectively, are
A. i. 2.72, ii. 0
B. i. 7.39, ii. 0
C. i. 0, ii. 2.72
D. i. 0, ii. 7.39
Answer: Option B
Related Questions on Complex Variable
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion