The values of the integrals $$\int\limits_0^1 {\left( {\int\limits_0^1 {\frac{{{\text{x}} - {\text{y}}}}{{{{\left( {{\text{x}} + {\text{y}}} \right)}^3}}}{\text{dy}}} } \right){\text{dx}}} $$ and $$\int\limits_0^1 {\left( {\int\limits_0^1 {\frac{{{\text{x}} - {\text{y}}}}{{{{\left( {{\text{x}} + {\text{y}}} \right)}^3}}}{\text{dx}}} } \right){\text{dy}}} $$ are
A. same and equal to 0.5
B. same and equal to -0.5
C. 0.5 and -0.5 respectively
D. -0.5 and 0.5 respectively
Answer: Option C
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion