The voltage across an impedance in a network is V(s) = Z(s). I(s), where V(s), Z(s) and I(s) are the Laplace transform of the corresponding time functions v(t), z(t) and i(t). The voltage v(t) is
A. v(t) = z(t).i(t)
B. $$v\left( t \right) = \int\limits_0^t {i\left( \tau \right)} z\left( {t - \tau } \right)d\tau $$
C. $$v\left( t \right) = \int\limits_0^t {i\left( \tau \right)} z\left( {t + \tau } \right)d\tau $$
D. v(t) = z(t) + i(t)
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion