The volume of the solid surrounded by the surface \[{\left( {\frac{{\rm{x}}}{{\rm{a}}}} \right)^{\frac{2}{3}}} + {\left( {\frac{{\rm{y}}}{{\rm{b}}}} \right)^{\frac{2}{3}}} + {\left( {\frac{{\rm{z}}}{{\rm{c}}}} \right)^{\frac{2}{3}}} = 1\] is
A. \[\frac{{4\pi {\rm{abc}}}}{{35}}\]
B. \[\frac{{{\rm{abc}}}}{{35}}\]
C. \[\frac{{2\pi {\rm{abc}}}}{{35}}\]
D. \[\frac{{\pi {\rm{abc}}}}{{35}}\]
Answer: Option A
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion