Examveda

The wave function for a harmonic oscillator described $$Nx\exp \left( { - \frac{{a{x^2}}}{2}} \right)$$   has

A. one maximum only

B. one maximum, one minimum only

C. two maxima, one minimum only

D. two maxima, two minima only

Answer: Option B


This Question Belongs to Engineering Chemistry >> Atomic Structure

Join The Discussion

Related Questions on Atomic Structure

The vibrational partition function for a molecule which can be described as a simple harmonic oscillator with fundamental frequency $$\nu $$ is given by

A. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)$$

B. $${\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$

C. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$

D. $$\exp \left( { - \frac{{h\nu }}{{2{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$