The z-transform of the discrete time signal x(n) = u(n)*u(n) with '*' being convolution is
A. $$\frac{1}{{{{\left[ {1 - {z^{ - 1}}} \right]}^2}}},\,{\text{ROC}}:\left| z \right| < 1$$
B. $$\frac{1}{{{{\left[ {1 - {z^{ - 1}}} \right]}^2}}}{\text{,}}\,{\text{ROC}}:\left| z \right| > 1$$
C. $$\frac{1}{{{{\left[ {1 - z} \right]}^2}}}{\text{,}}\,{\text{ROC}}:\left| z \right| > 1$$
D. $$\frac{1}{{{{\left[ {1 - z} \right]}^2}}}{\text{,}}\,{\text{ROC}}:\left| z \right| < 1$$
Answer: Option B
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion