Solution (By Examveda Team)
$$\eqalign{
& 5\% \,{\text{of}}\,A + 4\% \,{\text{of}}\,B = \frac{2}{3}\left( {6\% \,{\text{of}}\,A + \,8\,{\text{of}}\,B} \right) \cr
& \Rightarrow \frac{5}{{100}}A + \frac{4}{{100}}B = \frac{2}{3}\left( {\frac{6}{{100}}A + \frac{8}{{100}}B} \right) \cr
& \Rightarrow \frac{1}{{20}}A + \frac{1}{{25}}B = \frac{1}{{25}}A + \frac{4}{{75}}B \cr
& \Rightarrow \left( {\frac{1}{{20}} - \frac{1}{{25}}} \right)A = \left( {\frac{4}{{75}} - \frac{1}{{25}}} \right)B \cr
& \Rightarrow \frac{1}{{100}}A = \frac{1}{{75}}B \cr
& \frac{A}{B} = \frac{{100}}{{75}} = \frac{4}{3} \cr
& \therefore {\text{Required}}\,{\text{ratio}} = 4:3 \cr} $$
Join The Discussion