Two systems H1(z) and H2(z) are connected in cascade as shown below. The overall output y(n) is the same as the input x(n) with a one unit delay. The transfer function of the second system H2(z) is
$$x\left( n \right) \to \boxed{{H_1}\left( z \right) = \frac{{\left( {1 - 0.4{z^{ - 1}}} \right)}}{{\left( {1 - 0.6{z^{ - 1}}} \right)}}} \to \boxed{{H_2}\left( z \right)} \to y\left( n \right)$$
A. $$\frac{{\left( {1 - 0.6{z^{ - 1}}} \right)}}{{{z^{ - 1}}\left( {1 - 0.4{z^{ - 1}}} \right)}}$$
B. $$\frac{{{z^{ - 1}}\left( {1 - 0.6{z^{ - 1}}} \right)}}{{\left( {1 - 0.4{z^{ - 1}}} \right)}}$$
C. $$\frac{{{z^{ - 1}}\left( {1 - 0.4{z^{ - 1}}} \right)}}{{\left( {1 - 0.6{z^{ - 1}}} \right)}}$$
D. $$\frac{{\left( {1 - 0.4{z^{ - 1}}} \right)}}{{{z^{ - 1}}\left( {1 - 0.6{z^{ - 1}}} \right)}}$$
Answer: Option B
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion