Velocity vector of a flow field is given as \[\overrightarrow {\rm{V}} = 2{\rm{xy\hat i}} - {{\rm{x}}^2}{\rm{z\hat j}}{\rm{.}}\] The vorticity vector at (1, 1, 1) is
A. \[4{\rm{\hat i}} - {\rm{\hat j}}\]
B. \[4{\rm{\hat i}} - {\rm{\hat k}}\]
C. \[{\rm{\hat i}} - 4{\rm{\hat j}}\]
D. \[{\rm{\hat i}} - 4{\rm{\hat k}}\]
Answer: Option D
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion