What are poles and zeros of a system having following transfer function?
$$H\left( z \right) = \frac{{\left( {1 - {z^{ - 2}}} \right)}}{{\left( {1 + 1.3{z^{ - 1}} + 0.36{z^{ - 2}}} \right)}}$$
A. Zeros = -1, 1; poles = -0.4, -0.9
B. Zeros = -1, 1; poles = 0.4, 0.9
C. Zeros = 1; poles = 0.4, 0.9
D. Zeros = 1, 1; poles = 0.4, 0.9
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion