What are the value of k for which the system of equations:
(3k - 8)x + 3y + 3z = 0
3x + (3k - 8)y + 3z = 0
3x + 3y + (3k - 8)z = 0
has a not-trivial solution?
A. \[{\text{k}} = \frac{2}{3},\,\frac{{11}}{3},\,\frac{{10}}{3}\]
B. \[{\text{k}} = \frac{2}{3},\,\frac{{10}}{3},\,\frac{{11}}{3}\]
C. \[{\text{k}} = \frac{{11}}{3},\,\frac{{11}}{3},\,\frac{{11}}{3}\]
D. \[{\text{k}} = \frac{2}{3},\,\frac{{11}}{3},\,\frac{{11}}{3}\]
Answer: Option D
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2
Join The Discussion