What is the residue of the function $$\frac{{1 - {{\text{e}}^{2{\text{z}}}}}}{{{{\text{z}}^4}}}$$ at its pole?
A. $$\frac{4}{3}$$
B. $$ - \frac{4}{3}$$
C. $$ - \frac{2}{3}$$
D. $$\frac{2}{3}$$
Answer: Option B
A. $$\frac{4}{3}$$
B. $$ - \frac{4}{3}$$
C. $$ - \frac{2}{3}$$
D. $$\frac{2}{3}$$
Answer: Option B
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$
Join The Discussion