Examveda What is the value of $$1 + \frac{{{{\tan }^2}A}}{{1 + \sec A}}?$$ A. cosecAB. cosAC. secAD. sinAAnswer: Option C Solution (By Examveda Team) $$\eqalign{ & 1 + \frac{{{{\tan }^2}A}}{{1 + \sec A}} \cr & = 1 + \frac{{{{\sec }^2}A - 1}}{{1 + \sec A}} \cr & = \frac{{1 + \sec A + {{\sec }^2}A - 1}}{{1 + \sec A}} \cr & = \frac{{\sec A\left( {1 + \sec A} \right)}}{{1 + \sec A}} \cr & = \sec A \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & 1 + \frac{{{{\tan }^2}A}}{{1 + \sec A}} \cr & = 1 + \frac{{{{\sec }^2}A - 1}}{{1 + \sec A}} \cr & = \frac{{1 + \sec A + {{\sec }^2}A - 1}}{{1 + \sec A}} \cr & = \frac{{\sec A\left( {1 + \sec A} \right)}}{{1 + \sec A}} \cr & = \sec A \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion