Examveda What is the value of $$\frac{{3\sin {{58}^ \circ }}}{{\cos {{32}^ \circ }}} + \frac{{3\sin {{42}^ \circ }}}{{\cos {{48}^ \circ }}}$$ A. 7B. 9C. 6D. 8Answer: Option C Solution (By Examveda Team) $$\eqalign{ & \frac{{3\sin {{58}^ \circ }}}{{\cos {{32}^ \circ }}} + \frac{{3\sin {{42}^ \circ }}}{{\cos {{48}^ \circ }}} \cr & = \frac{{3\cos {{32}^ \circ }}}{{\cos {{32}^ \circ }}} + \frac{{3\cos {{48}^ \circ }}}{{\cos {{48}^ \circ }}} \cr & \left\{ {\therefore \,{{58}^ \circ } + {{32}^ \circ } = {{90}^ \circ }\,\& \,{{42}^ \circ } + {{48}^ \circ } = {{90}^ \circ }} \right\} \cr & = 3 + 3 \cr & = 6 \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & \frac{{3\sin {{58}^ \circ }}}{{\cos {{32}^ \circ }}} + \frac{{3\sin {{42}^ \circ }}}{{\cos {{48}^ \circ }}} \cr & = \frac{{3\cos {{32}^ \circ }}}{{\cos {{32}^ \circ }}} + \frac{{3\cos {{48}^ \circ }}}{{\cos {{48}^ \circ }}} \cr & \left\{ {\therefore \,{{58}^ \circ } + {{32}^ \circ } = {{90}^ \circ }\,\& \,{{42}^ \circ } + {{48}^ \circ } = {{90}^ \circ }} \right\} \cr & = 3 + 3 \cr & = 6 \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion